The sys-1 and sys-3 genes cooperate with Wnt signaling to establish the proximal-distal axis of the Caenorhabditis elegans gonad.

نویسندگان

  • Kellee R Siegfried
  • Ambrose R Kidd
  • Michael A Chesney
  • Judith Kimble
چکیده

To form the proximal-distal axis of the C. elegans gonad, two somatic gonadal precursor cells, Z1 and Z4, divide asymmetrically to generate one daughter with a proximal fate and one with a distal fate. Genes governing this process include the lin-17 frizzled receptor, wrm-1/beta-catenin, the pop-1/TCF transcription factor, lit-1/nemo-like kinase, and the sys-1 gene. Normally, all of these regulators promote the distal fate. Here we show that nuclear levels of a pop-1 GFP fusion protein are less abundant in the distal than in the proximal Z1/Z4 daughters. This POP-1 asymmetry is lost in mutants disrupting Wnt/MAPK regulation, but retained in sys-1 mutants. We find that sys-1 is haplo-insufficient for gonadogenesis defects and that sys-1 and pop-1 mutants display a strong genetic interaction in double heterozygotes. Therefore, sys-1 is a dose-sensitive locus and may function together with pop-1 to control Z1/Z4 asymmetry. To identify other regulatory genes in this process, we screened for mutants resembling sys-1. Four such genes were identified (gon-14, -15, -16, and sys-3) and shown to interact genetically with sys-1. However, only sys-3 promotes the distal fate at the expense of the proximal fate. We suggest that sys-3 is a new key gene in this pathway and that gon-14, gon-15, and gon-16 may cooperate with POP-1 and SYS-1 at multiple stages of gonad development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

POP-1 controls axis formation during early gonadogenesis in C. elegans.

The shape and polarity of the C. elegans gonad is defined during early gonadogenesis by two somatic gonadal precursor cells, Z1 and Z4, and their descendants. Z1 and Z4 divide asymmetrically to establish the proximal-distal axes of the gonad and to generate regulatory leader cells that control organ shape. In this paper, we report that pop-1, the C. elegans TCF/LEF-1 transcription factor, contr...

متن کامل

The sys-1 gene and sexual dimorphism during gonadogenesis in Caenorhabditis elegans.

In wild-type Caenorhabditis elegans, the hermaphrodite gonad is a symmetrical structure, whereas the male gonad is asymmetric. Two cellular processes are critical for the generation of these sexually dimorphic gonadal shapes during early larval development. First, regulatory "leader" cells that control tube extension and gonadal shape are generated. Second, the somatic gonadal precursor cells m...

متن کامل

Wnt Signaling and CEH-22/tinman/Nkx2.5 Specify a Stem Cell Niche in C. elegans

Wnt signaling regulates many aspects of metazoan development, including stem cells. In C. elegans, Wnt/MAPK signaling controls asymmetric divisions. A recent model proposed that the POP-1/TCF DNA binding protein works together with SYS-1/beta-catenin to activate transcription of target genes in response to Wnt/MAPK signaling. The somatic gonadal precursor (SGP) divides asymmetrically to generat...

متن کامل

The tumor suppressor APC differentially regulates multiple β-catenins through the function of axin and CKIα during C. elegans asymmetric stem cell divisions.

The APC tumor suppressor regulates diverse stem cell processes including gene regulation through Wnt-β-catenin signaling and chromosome stability through microtubule interactions, but how the disparate functions of APC are controlled is not well understood. Acting as part of a Wnt-β-catenin pathway that controls asymmetric cell division, Caenorhabditis elegans APC, APR-1, promotes asymmetric nu...

متن کامل

Reciprocal asymmetry of SYS-1/ -catenin and POP-1/TCF controls asymmetric divisions in Caenorhabditis elegans

-Catenins are conserved regulators of metazoan development that function with TCF DNA-binding proteins to activate transcription. In Caenorhabditis elegans, SYS-1/ -catenin and POP-1/TCF regulate several asymmetric divisions, including that of the somatic gonadal precursor cell (SGP). In the distal but not the proximal SGP daughter, SYS-1/ -catenin and POP-1/TCF transcriptionally activate ceh-2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 166 1  شماره 

صفحات  -

تاریخ انتشار 2004